
Package: OpenCL (via r-universe)
September 11, 2024

Version 0.2-11

Title Interface allowing R to use OpenCL

Author Simon Urbanek <Simon.Urbanek@r-project.org>, Aaron Puchert

<aaronpuchert@alice-dsl.net>

Maintainer Simon Urbanek <Simon.Urbanek@r-project.org>

Depends R (>= 2.0.0)

Description This package provides an interface to OpenCL, allowing R
to leverage computing power of GPUs and other HPC accelerator
devices.

License BSD_3_clause + file LICENSE

SystemRequirements OpenCL library, GNU make

URL http://www.rforge.net/OpenCL/

Repository https://s-u.r-universe.dev

RemoteUrl https://github.com/s-u/opencl

RemoteRef HEAD

RemoteSha 84afa35308d98f69c6d515a99e751efcc24768c9

Contents
clBuffer . 2
clLocal . 4
oclContext . 5
oclDevices . 6
oclInfo . 7
oclMemLimits . 8
oclPlatforms . 9
oclRun . 10
oclSimpleKernel . 12

Index 14

1

http://www.rforge.net/OpenCL/

2 clBuffer

clBuffer Create and handle OpenCL buffers

Description

OpenCL buffers are just like numeric or integer vectors that reside on the GPU and can directly be
accessed by kernels. Both non-scalar arguments to oclRun and its return type are OpenCL buffers.

Just like vectors in R, OpenCL buffers have a mode, which is (as of now) one of "double" or
"numeric" (corresponds to double in OpenCL C), "single" (float) or "integer" (int).

The constructor clBuffer takes a context as created by oclContext, a length and a mode argument.

The conversion function as.clBuffer creates an OpenCL buffer of the same length and mode as
the argument and copies the data. Conversely, as.double (= as.numeric) and as.integer read a
buffer and coerce the result as vector the appropriate mode.

With is.clBuffer one can check if an object is an OpenCL buffer.

The methods length.clBuffer and print.clBuffer retrieve the length and print the contents,
respectively.

Basic access to the data is available via [...]. Note that only contiguous memory operations
are supported on GPU buffers, so if the index does not reference a contiguous region then the
subsetting/assignment will be performed by retrieving the entire buffer and perfroming the operation
in R which is very expensive.

Note that unlike regular R objects GPU buffers are by design mutable, i.e. the object is only a
reference to the GPU memory and thus any modification will affect all refernces. The contents can
be emerged into R via x[] at which point the result is a regular R vector and no longer tied to the
source buffer. Analogously, x[] <- value is the canonical way to replace the entire contents of the
buffer where value must have the same length as the buffer (no recycling).

Usage

clBuffer(context, length, mode = c("numeric", "single", "double", "integer"))
as.clBuffer(vector, context, mode = class(vector))
is.clBuffer(any)
S3 method for class 'clBuffer'
as.double(x, ...)
S3 method for class 'clBuffer'
as.integer(x, ...)
S3 method for class 'clBuffer'
print(x, ...)
S3 method for class 'clBuffer'
length(x)
S3 method for class 'clBuffer'
x[i]
S3 replacement method for class 'clBuffer'
x[i] <- value

clBuffer 3

Arguments

context OpenCL context as created by oclContext

length Length of the required buffer

mode Mode of the buffer, can be one of "numeric", "single", "double" or "integer"

vector Numeric or integer vector or clFloat object

any Arbitrary object

x OpenCL buffer object (clBuffer)

i index specifying elements to extract or replace

value New values

... Arguments passed to subsequent methods

Author(s)

Aaron Puchert and Simon Urbanek

See Also

oclContext, oclRun

Examples

library(OpenCL)

Only proceed if this machine has at least one OpenCL platform
if (length(oclPlatforms())) {

ctx<-oclContext()

buf<-clBuffer(ctx, 16, "numeric")
Do not write buf<-..., as this replaces buf with a vector.
buf[]<-sqrt(1:16)
buf

intbuf<-as.clBuffer(1:16, ctx)
print(intbuf)

length(buf)
as.numeric(buf)
buf[]

buf[3:5]
buf[1:2] = 0
buf

clBuffer is the required argument and return type of oclRun.
See oclRun() examples.
}

4 clLocal

clLocal Create and handle local memory arguments for OpenCL kernels

Description

OpenCL kernels allow the use of local memory which is shared by all work-items of a work-group.
In most cases, such memory is allocated inside the kernel at compile time such as __local numeric
temp[GROUP_SIZE]. However, in some rare circumstances it may be desirable to allocate the buffer
dynamically as an argument to the kernel. In that case the corresponding argument of the kernel is
defined with the __local keyword and the caller has to specify the size of the local memory buffer
at run-time when calling the kernel.

The clLocal() function creates a specification of the local memory buffer. It is the only object that
may be passed to a kernel argument declared with __local. The object is merely a specification
that oclRun knows how to interpret, clLocal doesn’t actually allocate any memory.

By default, size is interpreted as bytes, but for convenience it can also specify the number of
elements of a particular type. In the special case of "numeric" the actual size of one element (and
thus the total buffer size) will depend on the context in which this specification is used (single or
double precision).

With is.clLocal one can check if an object is a local buffer specification.

The methods length.clLocal and print.clLocal retrieve the length (number of elements) and
print the contents, respectively.

Usage

clLocal(length, mode = c("byte", "numeric", "single", "double", "integer"))
is.clLocal(x)
S3 method for class 'clLocal'
print(x, ...)
S3 method for class 'clLocal'
length(x)

Arguments

length numeric, length (number of elements) of the required buffer. The actual size will
depend on mode.

mode string, mode of the buffer (only used to compute the total size in bytes). The
default is to treat length as the size in bytes (i.e., "byte" is aways allowed
irrespective of the type of the kernel argument).

x object

... Ignored

oclContext 5

Value

clLocal returns an object of the class "cLocal"

is.clLocal return TRUE for "clLocal" objects and FALSE otherwise.

print method returns x invisibly.

length returns a numeric scalar with the length (number of elements) in the buffer specification.

Note

The internal structure of the clLocal object should be considered private, may change and no user
code should access its components. Similarly, clLocal objects are only legal when returned from
the clLocal() function, they may not be created by other means or mutated.

Author(s)

Simon Urbanek

See Also

oclRun

oclContext Create an OpenCL context for a given device.

Description

OpenCL contexts host kernels and buffers for the device they are hosted on. They also have an
attached command queue, which allows out-of-order execution of all operations. Once you have a
context, you can create a kernel in the context with oclSimpleKernel.

Usage

oclContext(device = "default", precision = c("best", "single", "double"))

Arguments

device Device object as obtained from oclDevices or a type as in oclDevices. In this
case, a suitable device of the given type will be selected automatically.

precision Default precision of the context. This is the precision that will be chosen by
default for numeric buffers and kernels with numeric output mode.

Value

An OpenCL context.

Author(s)

Aaron Puchert

6 oclDevices

See Also

oclDevices, oclSimpleKernel

Examples

library(OpenCL)
cat("== Platforms:\n")
(platforms <- oclPlatforms())
if (length(platforms)) {

cat("== Devices:\n")
pick the first platform
print(devices <- oclDevices(platforms[[1]]))
if (length(devices)) {

cat("== Context:\n")
pick the first device
print(ctx <- oclContext(devices[[1]]))

}
cat("== Default context:\n")
Note that context can find device on its own
(may be different from above if you have multiple devices)
print(c2 <- oclContext())

}

oclDevices Get a list of OpenCL devices.

Description

oclDevices retrieves a list of OpenCL devices for the given platform.

Usage

oclDevices(platform = oclPlatforms()[[1]],
type = c("all", "cpu", "gpu", "accelerator", "default"))

Arguments

platform OpenCL platform (see oclPlatforms)

type Desired device type, character vector of length one. Valid values are "cpu",
"gpu", "accelerator", "all", "default". Partial matches are allowed.

Value

List of devices. May be empty.

Author(s)

Simon Urbanek

oclInfo 7

See Also

oclPlatforms

Examples

p <- oclPlatforms()
if (length(p))

print(oclDevices(p[[1]], "all"))

oclInfo Retrieve information about an OpenCL object.

Description

Some OpenCL obejcts have information tokens associated with them. For example the device obejct
has a name, vendor, list of extensions etc. oclInfo returns a list of such properties for the given
object.

Usage

oclInfo(item)
S3 method for class 'clDeviceID'
oclInfo(item)
S3 method for class 'clPlatformID'
oclInfo(item)
S3 method for class 'list'
oclInfo(item)

Arguments

item object to retrieve information properties from

Value

List of properties. The properties vary by object type. Some common properties are "name",
"vendor", "version", "profile" and "exts".

Author(s)

Simon Urbanek

8 oclMemLimits

Examples

p <- oclPlatforms()
if (length(p)) {

cat("== Platform information:\n")
print(oclInfo(p[[1]]))
d <- oclDevices(p[[1]])
if (length(d)) {

cat("== Device information:\n")
print(oclInfo(d))

}
}

oclMemLimits OpenCL Memory Management and Limits

Description

oclMemLimits manages the memory limits used internally to aid with R garbage collection and
reports used buffer memory.

Usage

oclMemLimits(trigger = NULL, high = NULL)

Arguments

trigger size specification for trigger limit or NULL to not change

high size specification for high mark limit or NULL to not change

Details

In principle the memory management is simple: as long as a reference to a GPU object exists in R,
that object is retained. As soon as R removes the reference object, the corresponding GPU object is
released. This is sounds easy execpt for one important detail: R only releases unused objects when
a garbage collection is run (see gc), but R does not know about the GPU memory so it may not
decide that it is necessary if little R memory is used.

As a user, you can explicitly call gc() to force all unused objects to be collected, but garbage
collection is expensive so it may impact your computation. Therefore OpenCL tracks allocated
memory sizes used by clBuffer buffers and will trigger R garbage collection automatically if
certain limits are reached.

There are two limits: trigger limit and high limit. The trigger limit is the threshold at which
OpenCL will attempt to run garbage collection. This limit is checked before any buffer allocation.
Once this limit is exceeded, OpenCL will run gc() to attempt to free memory. Hoever, if the current
operation actually does require a lot of memory, no GPU memory may be freed. In that case running
garbage collection would be wasteful, therefore OpenCL will disable further GC until the high limit
is reached. Beyond that limit GC is always run.

oclPlatforms 9

The limit size specifications can be one of the following: a positive integer numeric (in bytes) or a
scalar string consisting of the integer numeric and an optional unit suffix. The following suffixes
are supported: "k", "m" and "g" - corresponding powers of 1024. Note that the reported sizes are
always in bytes represented as numerics.

Value

List with followng components:

trigger active trigger limit (in bytes) or 0 if not active

high active trigger limit (in bytes) or 0 if not active

used number of bytes currently allocated in clBuffers on the GPU

in.zone logical, TRUE if garbage collection is disabled due to the inability to reduce usage
under trigger, i.e., the usage is between trigger and high

Note

Currently the default is to not enable the automatic garbage collection, becasue it is experimental
and best settings will cary by the hardware used,but that is likey to change. It can always be disabled
with oclMemLimits(0,0).

IMPORTANT: The current tracking is global to OpenCL, so it is based on all the memory used
across all devices.

Author(s)

Simon Urbanek

See Also

gc, clBuffer

Examples

oclMemLimits()

oclPlatforms Retrieve available OpenCL platforms.

Description

oclPlatforms retrieves all available OpenCL platforms.

Usage

oclPlatforms()

10 oclRun

Value

List of available OpenCL platforms. If using OpenCL with Installable Client Driver (ICD) support,
the result can be an empty list if no vendor ICD can be found. A warning is also issued in that case.

Author(s)

Simon Urbanek

See Also

oclDevices

Examples

print(oclPlatforms())

oclRun Run a kernel using OpenCL.

Description

oclRun is used to execute code that has been compiled for OpenCL.

Usage

oclRun(kernel, size, ..., dim = size)

Arguments

kernel Kernel object as obtained from oclSimpleKernel

size Length of the output vector

... Additional arguments passed to the kernel

dim Numeric vector describing the global work dimensions, i.e., the index range that
the kernel will be run on. The kernel can use get_global_id(n) to obtain
the (n + 1)-th dimension index and get_global_size(n) to get the dimension.
OpenCL standard supports only up to three dimensions, you can use use index
vectors as arguments if more dimensions are required. Note that dim is not
necessarily the dimension of the result although it can be.

oclRun 11

Details

oclRun pushes kernel arguments, executes the kernel and retrieves the result. The kernel is expected
to have either __global double * or __global float * type (write-only) as the first argument
which will be used for the result and const unsigned int second argument denoting the result
length. All other arguments are assumed to be read-only and will be filled according to the ...
values. These can either be OpenCL buffers as generated by clBuffer for pointer arguments, or
scalar values (vectors of length one) for scalar arguments. Only integer (int), and numeric (double
or float) scalars and OpenCL buffers are supported as kernel arguments. The caller is responsible
for matching the argument types according to the kernel in a way similar to .C and .Call.

Note that the kernel must match the input types as well, so typically as.clBuffer() should include
the mode (e.g., "numeric") to match the kernel and/or explicit as.numeric() coercion should be
used.

Value

The resulting buffer of length size.

Author(s)

Simon Urbanek, Aaron Puchert

See Also

oclSimpleKernel, clBuffer

Examples

library(OpenCL)
Only proceed if this machine has at least one OpenCL platform
if (length(oclPlatforms())) {
ctx = oclContext(precision="single")

code = c("
__kernel void dnorm(

__global numeric* output,
const unsigned int count,
__global numeric* input,

const numeric mu, const numeric sigma)
{

size_t i = get_global_id(0);
if(i < count)
output[i] = exp((numeric) (-0.5 * ((input[i] - mu) / sigma) * ((input[i] - mu) / sigma)))

/ (sigma * sqrt((numeric) (2 * 3.14159265358979323846264338327950288)));
}")
k.dnorm <- oclSimpleKernel(ctx, "dnorm", code)
f <- function(x, mu=0, sigma=1)

as.numeric(oclRun(k.dnorm, length(x), as.clBuffer(x, ctx, "numeric"), mu, sigma))

expect differences since the above uses single-precision but
it should be close enough

12 oclSimpleKernel

f(1:10/2) - dnorm(1:10/2)

does the device support double-precision?
if (any("cl_khr_fp64" == oclInfo(attributes(ctx)$device)$exts)) {

k.dnorm <- oclSimpleKernel(ctx, "dnorm", code, "double")
f <- function(x, mu=0, sigma=1)
as.numeric(oclRun(k.dnorm, length(x), as.clBuffer(x, ctx, "double"), mu, sigma))

probably not identical, but close...
f(1:10/2) - dnorm(1:10/2)

} else cat("\nSorry, your device doesn't support double-precision\n")

Note that in practice you can use precision="best" in the first
example which will pick "double" on devices that support it and
"single" elsewhere
}

oclSimpleKernel Create and compile OpenCL kernel code.

Description

Creates a kernel object by compiling the supplied code. The kernel can then be used in oclRun.

Usage

oclSimpleKernel(context, name, code,
output.mode = c("numeric", "single", "double", "integer"))

Arguments

context Context (as created by oclContext) to compile the kernel in.

name Name of the kernel function - must match the name used in the supplied code.

code Character vector containing the code. The code will be concatenated (as-is, no
newlines are added!) by the engine.

output.mode Mode of the output argument of the kernel, as in clBuffer. This can be one of
"single", "double", "integer", or "numeric". The default value "numeric" maps
to the default precision of the context.

The kernel code may use a type numeric that is typedef’d to the given preci-
sion, i.e. either float or double. The OpenCL extension cl_khr_fp64 will be
enabled automatically in the second case, so you don’t have to add the pragma
yourself.

oclSimpleKernel 13

Details

oclSimpleKernel builds the program specified by code and creates a kernel from the program.

The kernel built by this function is simple in that it can have exactly one vector output and arbitrarily
many inputs. The first argument of the kernel must be __global double* or __global float*
for the output and the second argument must be const unsigned int for the length of the output
vector. Additional numeric scalar arguments are assumed to have the same mode as the output, i.e.
if the output shall have "double" precision, then numeric scalar arguments are assumed to be double
values, similarly for single-precision. All additional arguments are optional. See oclRun for an
example of a simple kernel.

Note that building a kernel can take substantial amount of time (depending on the OpenCL imple-
mentation) so it is generally a good idea to compile a kernel once and re-use it many times.

Value

Kernel object that can be used by oclRun.

Author(s)

Simon Urbanek, Aaron Puchert

See Also

oclContext, oclRun

Index

∗ interface
clBuffer, 2
clLocal, 4
oclContext, 5
oclDevices, 6
oclInfo, 7
oclMemLimits, 8
oclPlatforms, 9
oclRun, 10
oclSimpleKernel, 12

.C, 11

.Call, 11
[.clBuffer (clBuffer), 2
[<-.clBuffer (clBuffer), 2

as.clBuffer (clBuffer), 2
as.double.clBuffer (clBuffer), 2
as.integer.clBuffer (clBuffer), 2

clBuffer, 2, 8, 9, 11, 12
clLocal, 4

gc, 8, 9

is.clBuffer (clBuffer), 2
is.clLocal (clLocal), 4

length.clBuffer (clBuffer), 2
length.clLocal (clLocal), 4

oclContext, 3, 5, 12, 13
oclDevices, 5, 6, 6, 10
oclInfo, 7
oclMemLimits, 8
oclPlatforms, 6, 7, 9
oclRun, 2–5, 10, 12, 13
oclSimpleKernel, 5, 6, 10, 11, 12

print.clBuffer (clBuffer), 2
print.clLocal (clLocal), 4

14

	clBuffer
	clLocal
	oclContext
	oclDevices
	oclInfo
	oclMemLimits
	oclPlatforms
	oclRun
	oclSimpleKernel
	Index

