
Package: iotools (via r-universe)
September 7, 2024

Version 0.3-5

Title I/O Tools for Streaming

Author Simon Urbanek <Simon.Urbanek@r-project.org>, Taylor Arnold

<taylor.arnold@acm.org>

Maintainer Simon Urbanek <Simon.Urbanek@r-project.org>

Depends R (>= 2.9.0)

Imports methods, parallel, utils

Description Basic I/O tools for streaming and data parsing.

License GPL-2 | GPL-3

URL https://www.rforge.net/iotools

Repository https://s-u.r-universe.dev

RemoteUrl https://github.com/s-u/iotools

RemoteRef HEAD

RemoteSha eac3690c15a83d6628a4722c2f5a67f86e160795

Contents
.default.formatter . 2
as.output . 3
chunk . 4
chunk.apply . 5
chunk.map . 7
ctapply . 8
dstrfw . 9
dstrsplit . 11
fdrbind . 13
idstrsplit . 14
imstrsplit . 15
input.file . 17
line.merge . 18
mstrsplit . 18

1

https://www.rforge.net/iotools

2 .default.formatter

output.file . 20
read.csv.raw . 21
readAsRaw . 22
which.min.key . 23
write.csv.raw . 24

Index 25

.default.formatter Default formatter, coorisponding to the as.output functions

Description

This function provides the default formatter for the iotools package; it assumes that the key is
seperated from the rest of the row by a tab character, and the elements of the row are seperated by
the pipe ("|") character. Vector and matrix objects returned from the output via as.output.

Usage

.default.formatter(x)

Arguments

x character vector (each element is treated as a row) or a raw vector (LF characters
'\n' separate rows) to split

Value

Either a character matrix with a row for each element in the input, or a character vector with an
element for each element in the input. The latter occurs when only one column (not counting the
key) is detected in the input. The keys are stored as rownames or names, respectively.

Author(s)

Simon Urbanek

See Also

mstrsplit

Examples

c <- c("A\tB|C|D", "A\tB|B|B", "B\tA|C|E")
.default.formatter(c)

c <- c("A\tD", "A\tB", "B\tA")
.default.formatter(c)

as.output 3

as.output Character Output

Description

Create objects of class output.

Usage

as.output(x, ...)

Arguments

x object to be converted to an instance of output.

... optional arguments to be passed to implementing methods of as.output. Most
methods support the following arguments: sep string, column/value separator,
nsep string, key separator, keys either a logical (if FALSE names/row names are
suppressed) or a character vector with overriding keys. The default for keys
typically varies by class or is auto-detected (e.g., named vectors user names as
keys, data.frames use row names if they are non-automatic etc.). All methods
also support con argument which pushes the output into a connection instead of
generating an output object - so as.output(x, con=...) is thus not a coersion
but used only for its side-effect. Note that con also supports special values
iotools.stdout, iotools.stderr and iotools.fd(fd) which write directly
into the corresponding streams instead of using theconnection API.

Details

as.output is generic, and methods can be written to support new classes. The output is meant to
be a raw vector suitable for writing to the disk or sending over a connection.

Value

if con is set to a connection then the result is NULL and the method is used for its side-effect,
otherwise the result is a raw vector.

Side note: we cannot create a formal type of output, because writeBin does is.vector() check
which doesn’t dispatch and prevents anything with a class to be written.

Author(s)

Simon Urbanek

4 chunk

Examples

m = matrix(sample(letters), ncol=2)
as.output(m)

df = data.frame(a = sample(letters), b = runif(26), c = sample(state.abb,26))
str(as.output(df))

as.output(df, con=iotools.stdout)

chunk Functions for very fast chunk-wise processing

Description

chunk.reader creates a reader that will read from a binary connection in chunks while preserving
integrity of lines.

read.chunk reads the next chunk using the specified reader.

Usage

chunk.reader(source, max.line = 65536L, sep = NULL)
read.chunk(reader, max.size = 33554432L, timeout = Inf)

Arguments

source binary connection or character (which is interpreted as file name) specifying the
source

max.line maximum length of one line (in byets) - determines the size of the read buffer,
default is 64kb

sep optional string: key separator if key-aware chunking is to be used

character is considered a key and subsequent records holding the same key are guaranteed to be

reader reader object as returned by chunk.reader

max.size maximum size of the chunk (in bytes), default is 32Mb

timeout numeric, timeout (in seconds) for reads if source is a raw file descriptor.

Details

chunk.reader is essentially a filter that converts binary connection into chunks that can be subse-
quently parsed into data while preserving the integrity of input lines. read.chunk is used to read
the actual chunks. The implementation is very thin to prevert copying of large vectors for best
efficiency.

If sep is set to a string, it is treated as a single-character separator character. If specified, prefix
in the input up to the specified character is treated as a key and subsequent lines with the same
key are guaranteed to be processed in the same chunk. Note that this implies that the chunk size is

chunk.apply 5

practically unlimited, since this may force accumulation of multiple chunks to satisfy this condition.
Obviously, this increases the processing and memory overhead.

In addition to connections chunk.reader supports raw file descriptors (integers of the class "fileDescriptor").
In that case the reads are preformed directly by chunk.reader and timeout can be used to perform
non-blocking or timed reads (unix only, not supported on Windows).

Value

chunk.reader returns an object that can be used by read.chunk. If source is a string, it is equiv-
alent to calling chunk.reader(file(source, "rb"), ...).

read.chunk returns a raw vector holding the next chunk or NULL if timeout was reached. It is de-
liberate that read.chunk does NOT return a character vector since that would reasult in a high per-
formance penalty. Please use the appropriate parser to convert the chunk into data, see mstrsplit.

Author(s)

Simon Urbanek

chunk.apply Process input by applying a function to each chunk

Description

chunk.apply processes input in chunks and applies FUN to each chunk, collecting the results.

Usage

chunk.apply(input, FUN, ..., CH.MERGE = rbind, CH.MAX.SIZE = 33554432,
CH.PARALLEL=1L, CH.SEQUENTIAL=TRUE, CH.BINARY=FALSE,
CH.INITIAL=NULL)

chunk.tapply(input, FUN, ..., sep = "\t", CH.MERGE = rbind, CH.MAX.SIZE = 33554432)

Arguments

input Either a chunk reader or a file name or connection that will be used to create a
chunk reader

FUN Function to apply to each chunk

... Additional parameters passed to FUN

sep for tapply, gives separator for the key over which to apply. Each line is split
at the first separator, and the value is treated as the key over which to apply the
function.

CH.MERGE Function to call to merge results from all chunks. Common values are list to
get lapply-like behavior, rbind for table-like output or c for a long vector.

CH.MAX.SIZE maximal size of each chunk in bytes

6 chunk.apply

CH.PARALLEL the number of parallel processes to use in the calculation (unix only).

CH.SEQUENTIAL logical, only relevant for parallel processing. If TRUE then the chunks are guar-
anteed to be processed in sequential order. If FALSE then the chunks may be
processed in any order to gain better performance.

CH.BINARY logical, if TRUE then CH.MERGE is a binary function used to update the result
object for each chunk, effectively acting like the Reduce function. If FALSE then
the results from all chunks are accumulated first and then CH.MERGE is called
with all chunks as arguments. See below for performance considerations.

CH.INITIAL Function which will be applied to the first chunk if CH.BINARY=TRUE. If NULL
then CH.MERGE(NULL, chunk) is called instead.

Details

Due to the fact that chunk-wise processing is typically used when the input data is too large to fit
in memory, there are additional considerations depending on whether the results after applying FUN
are itself large or not. If they are not, then the apporach of accumulating them and then applying
CH.MERGE on all results at once is typically the most efficient and it is what CH.BINARY=FALSE will
do.

However, in some situations where the result are resonably big or the number of chunks is very high,
it may be more efficient to update a sort of state based on each arriving chunk instead of collecting
all results. This can be achieved by setting CH.BINARY=TRUE in which case the process is equivalent
to:

res <- CH.INITIAL(FUN(chunk1))
res <- CH.MERGE(res, FUN(chunk2))
res <- CH.MERGE(res, FUN(chunk3))
...
res

If CH.INITITAL is NULL then the first line is res <- CH.MERGE(NULL, FUN(chunk1)).

The parameter CH.SEQUENTIAL is only used if parallel processing is requested. It allows the sys-
tem to process chunks out of order for performace reasons. If it is TRUE then the order of the
chunks is respected, but merging can only proceed if the result of the next chunk is avaiable. With
CH.SEQUENTIAL=FALSE the workers will continue processing further chunks as they become ava-
iable, not waiting for the results of the preceding calls. This is more efficient, but the order of the
chunks in the result is not deterministic.

Note that if parallel processing is required then all calls to FUN should be considered independent.
However, CH.MERGE is always run in the current session and thus is allowed to have side-effects.

Value

The result of calling CH.MERGE on all chunk results as arguments (CH.BINARY=FALSE) or result of
the last call to binary CH.MERGE.

Note

The input to FUN is the raw chunk, so typically it is advisable to use mstrsplit or similar function
as the first step in FUN.

chunk.map 7

Note

The support for CH.PARALLEL is considered experimental and may change in the future.

Author(s)

Simon Urbanek

Examples

Not run:
compute quantiles of the first variable for each chunk
of at most 10kB size
chunk.apply("input.file.txt",

function(o) {
m = mstrsplit(o, type='numeric')
quantile(m[,1], c(0.25, 0.5, 0.75))

}, CH.MAX.SIZE=1e5)

End(Not run)

chunk.map Map a function over a file by chunks

Description

A wrapper around the core iotools functions to easily apply a function over chunks of a large file.
Results can be either written to a file or returned as an internal list.

Usage

chunk.map(input, output = NULL, formatter = .default.formatter,
FUN, key.sep = NULL, max.line = 65536L,
max.size = 33554432L, output.sep = ",", output.nsep = "\t",
output.keys = FALSE, skip = 0L, ...)

Arguments

input an input connection or character vector describing a local file.

output an optional output connection or character vector describing a local file. If NULL,
the results are returned internally as a list.

formatter a function that takes raw input and produces the input given to FUN

FUN a user provided function to map over the chunks. The result of FUN is either
wrapper in a list item, when output is NULL, or written to the output file using
as.output

key.sep optional key separator given to chunk.reader

max.line maximum number of lines given to chunk.reader

8 ctapply

max.size maximum size of a block as given to read.chunk

output.sep single character giving the field separator in the output.

output.nsep single character giving the key separator in the output.

output.keys logical. Whether as.output should interpret row names as keys.

skip integer giving the number of lines to strip off the input before reading. Useful
when the input contains a row a column headers

... additional parameters to pass to FUN

Value

A list of results when output is NULL; otherwise no output is returned.

Author(s)

Taylor Arnold

ctapply Fast tapply() replacement functions

Description

ctapply is a fast replacement of tapply that assumes contiguous input, i.e. unique values in
the index are never speparated by any other values. This avoids an expensive split step since
both value and the index chungs can be created on the fly. It also cuts a few corners to allow
very efficient copying of values. This makes it many orders of magnitude faster than the classical
lapply(split(), ...) implementation.

Usage

ctapply(X, INDEX, FUN, ..., MERGE=c)

Arguments

X an atomic object, typically a vector

INDEX numeric or character vector of the same length as X

FUN the function to be applied

... additional arguments to FUN. They are passed as-is, i.e., without replication or
recycling

MERGE function to merge the resulting vector or NULL if the arguments to such a func-
tiona re to be returned instead

dstrfw 9

Details

Note that ctapply supports either integer, real or character vectors as indices (note that factors
are integer vectors and thus supported, but you do not need to convert character vectors). Unlike
tapply it does not take a list of factors - if you want to use a cross-product of factors, create the
product first, e.g. using paste(i1, i2, i3, sep='\01') or multiplication - whetever method is
convenient for the input types.

ctapply requires the INDEX to contiguous. One (slow) way to achieve that is to use sort or order.

ctapply also supports X to be a matrix in which case it is split row-wise based on INDEX. The num-
ber of rows must match the length of INDEX. Note that the indexed matrices behave as if drop=FALSE
was used and curretnly dimnames are only honored if rownames are present.

Note

This function has been moved to the fastmatch package!

Author(s)

Simon Urbanek

See Also

tapply

Examples

i = rnorm(4e6)
names(i) = as.integer(rnorm(1e6))
i = i[order(names(i))]
system.time(tapply(i, names(i), sum))
system.time(ctapply(i, names(i), sum))

ctapply() also works on matrices (unlike tapply)
m=matrix(c("A","A","B","B","B","C","A","B","C","D","E","F","","X","X","Y","Y","Z"),,3)
ctapply(m, m[,1], identity, MERGE=list)
ctapply(m, m[,1], identity, MERGE=rbind)
m2=m[,-1]
rownames(m2)=m[,1]
colnames(m2) = c("V1","V2")
ctapply(m2, rownames(m2), identity, MERGE=list)
ctapply(m2, rownames(m2), identity, MERGE=rbind)

dstrfw Split fixed width input into a dataframe

Description

dstrfw takes raw or character vector and splits it into a dataframe according to a vector of fixed
widths.

10 dstrfw

Usage

dstrfw(x, col_types, widths, nsep = NA, strict=TRUE, skip=0L, nrows=-1L)

Arguments

x character vector (each element is treated as a row) or a raw vector (newlines
separate rows)

col_types required character vector or a list. A vector of classes to be assumed for the
output dataframe. If it is a list, class(x)[1] will be used to determine the class
of the contained element. It will not be recycled, and must be at least as long as
the longest row if strict is TRUE.
Possible values are "NULL" (when the column is skipped) one of the six atomic
vector types ('character', 'numeric', 'logical', 'integer', 'complex',
'raw') or POSIXct. ’POSIXct’ will parse date format in the form "YYYY-MM-
DD hh:mm:ss.sss" assuming GMT time zone. The separators between digits
can be any non-digit characters and only the date part is mandatory. See also
fasttime::asPOSIXct for details.

widths a vector of widths of the columns. Must be the same length as col_types.

nsep index name separator (single character) or NA if no index names are included

strict logical, if FALSE then dstrsplit will not fail on parsing errors, otherwise input
not matching the format (e.g. more columns than expected) will cause an error.

skip integer: the number of lines of the data file to skip before beginning to read data.

nrows integer: the maximum number of rows to read in. Negative and other invalid
values are ignored.

Details

If nsep is specified, the output of dstrsplit contains an extra column called ’rowindex’ containing
the row index. This is used instead of the rownames to allow for duplicated indicies (which are
checked for and not allowed in a dataframe, unlike the case with a matrix).

Value

If nsep is specified then all characters up to (but excluding) the occurrence of nsep are treated as
the index name. The remaining characters are split using the widths vector into fields (columns).
dstrfw will fail with an error if any line does not contain enough characters to fill all expected
columns, unless strict is FALSE. Excessive columns are ignored in that case. Lines may contain
fewer columns (but not partial ones unless strict is FALSE) in which case they are set to NA.

dstrfw returns a data.frame with as many rows as they are lines in the input and as many columns
as there are non-NA values in col_types, plus an additional column if nsep is specified. The
colnames (other than the row index) are set to ’V’ concatenated with the column number unless
col_types is a named vector in which case the names are inherited.

Author(s)

Taylor Arnold and Simon Urbanek

dstrsplit 11

Examples

input = c("bear\t22.7horse+3", "pear\t 3.4mouse-3", "dogs\t14.8prime-8")
z = dstrfw(x = input, col_types = c("numeric", "character", "integer"),

width=c(4L,5L,2L), nsep="\t")
z

Now without row names (treat seperator as a 1 char width column with type NULL)
z = dstrfw(x = input,

col_types = c("character", "NULL", "numeric", "character", "integer"),
width=c(4L,1L,4L,5L,2L))

z

dstrsplit Split binary or character input into a dataframe

Description

dstrsplit takes raw or character vector and splits it into a dataframe according to the separators.

Usage

dstrsplit(x, col_types, sep="|", nsep=NA, strict=TRUE, skip=0L, nrows=-1L,
quote="")

Arguments

x character vector (each element is treated as a row) or a raw vector (newlines
separate rows)

col_types required character vector or a list. A vector of classes to be assumed for the
output dataframe. If it is a list, class(x)[1] will be used to determine the class
of the contained element. It will not be recycled, and must be at least as long as
the longest row if strict is TRUE.
Possible values are "NULL" (when the column is skipped) one of the six atomic
vector types ('character', 'numeric', 'logical', 'integer', 'complex',
'raw') or POSIXct. ’POSIXct’ will parse date format in the form "YYYY-MM-
DD hh:mm:ss.sss" assuming GMT time zone. The separators between digits
can be any non-digit characters and only the date part is mandatory. See also
fasttime::asPOSIXct for details.

sep single character: field (column) separator. Set to NA for no seperator; in other
words, a single column.

nsep index name separator (single character) or NA if no index names are included

strict logical, if FALSE then dstrsplit will not fail on parsing errors, otherwise input
not matching the format (e.g. more columns than expected) will cause an error.

skip integer: the number of lines of the data file to skip before beginning to read data.

nrows integer: the maximum number of rows to read in. Negative and other invalid
values are ignored.

12 dstrsplit

quote the set of quoting characters as a length 1 vector. To disable quoting altogether,
use quote = "" (the default). Quoting is only considered for columns read as
character.

Details

If nsep is specified then all characters up to (but excluding) the occurrence of nsep are treated as
the index name. The remaining characters are split using the sep character into fields (columns).
dstrsplit will fail with an error if any line contains more columns then expected unless strict
is FALSE. Excessive columns are ignored in that case. Lines may contain fewer columns in which
case they are set to NA.

Note that it is legal to use the same separator for sep and nsep in which case the first field is treated
as a row name and subsequent fields as data columns.

If nsep is specified, the output of dstrsplit contains an extra column called ’rowindex’ containing
the row index. This is used instead of the rownames to allow for duplicated indicies (which are
checked for and not allowed in a dataframe, unlike the case with a matrix).

Value

dstrsplit returns a data.frame with as many rows as they are lines in the input and as many
columns as there are non-NULL values in col_types, plus an additional column if nsep is speci-
fied. The colnames (other than the row index) are set to ’V’ concatenated with the column number
unless col_types is a named vector in which case the names are inherited.

Author(s)

Taylor Arnold and Simon Urbanek

Examples

input = c("apple\t2|2.7|horse|0d|1|2015-02-05 20:22:57",
"pear\t7|3e3|bear|e4|1+3i|2015-02-05",
"pear\te|1.8|bat|77|4.2i|2001-02-05")

z = dstrsplit(x = input,
col_types = c("integer", "numeric", "character","raw","complex","POSIXct"),
sep="|", nsep="\t")

lapply(z,class)
z

Ignoring the third column:
z = dstrsplit(x = input,

col_types = c("integer", "numeric", "character","raw","complex","POSIXct"),
sep="|", nsep="\t")

z

fdrbind 13

fdrbind Fast row-binding of lists and data frames

Description

fdrbind lakes a list of data frames or lists and merges them together by rows very much like rbind
does for its arguments. But unlike rbind it specializes on data frames and lists of columns only and
performs the merge entriley at C leve which allows it to be much faster than rbind at the cost of
generality.

Usage

fdrbind(list)

Arguments

list lists of parts that can be either data frames or lists

Details

All parts are expected to have the same number of columns in the same order. No column name
matching is performed, they are merged by position. Also the same column in each part has to be of
the same type, no coersion is performed at this point. The first part determines the column names,
if any. If the parts contain data frames, their rownames are ignored, only the contents are merged.
Attributes are not copied, which is intentional. Probaby the most common implocation is that ff
you use factors, they must have all the same levels, otherwise you have to convert factor columns to
strings first.

Value

The merged data frame.

Author(s)

Simon Urbanek

See Also

rbind

14 idstrsplit

idstrsplit Create an iterator for splitting binary or character input into a
dataframe

Description

idstrsplit takes a binary connection or character vector (which is interpreted as a file name) and
splits it into a series of dataframes according to the separator.

Usage

idstrsplit(x, col_types, sep="|", nsep=NA, strict=TRUE,
max.line = 65536L, max.size = 33554432L)

Arguments

x character vector (each element is treated as a row) or a raw vector (newlines
separate rows)

col_types required character vector or a list. A vector of classes to be assumed for the
output dataframe. If it is a list, class(x)[1] will be used to determine the class
of the contained element. It will not be recycled, and must be at least as long as
the longest row if strict is TRUE.
Possible values are "NULL" (when the column is skipped) one of the six atomic
vector types ('character', 'numeric', 'logical', 'integer', 'complex',
'raw') or POSIXct. ’POSIXct’ will parse date format in the form "YYYY-MM-
DD hh:mm:ss.sss" assuming GMT time zone. The separators between digits
can be any non-digit characters and only the date part is mandatory. See also
fasttime::asPOSIXct for details.

sep single character: field (column) separator. Set to NA for no seperator; in other
words, a single column.

nsep index name separator (single character) or NA if no index names are included

strict logical, if FALSE then dstrsplit will not fail on parsing errors, otherwise input
not matching the format (e.g. more columns than expected) will cause an error.

max.line maximum length of one line (in byets) - determines the size of the read buffer,
default is 64kb

max.size maximum size of the chunk (in bytes), default is 32Mb

Details

If nsep is specified then all characters up to (but excluding) the occurrence of nsep are treated as
the index name. The remaining characters are split using the sep character into fields (columns).
dstrsplit will fail with an error if any line contains more columns then expected unless strict
is FALSE. Excessive columns are ignored in that case. Lines may contain fewer columns in which
case they are set to NA.

imstrsplit 15

Note that it is legal to use the same separator for sep and nsep in which case the first field is treated
as a row name and subsequent fields as data columns.

If nsep is specified, the output of dstrsplit contains an extra column called ’rowindex’ containing
the row index. This is used instead of the rownames to allow for duplicated indicies (which are
checked for and not allowed in a dataframe, unlike the case with a matrix).

Value

idstrsplit returns an iterator (closure). When nextElem is called on the iterator a data.frame is
returned with as many rows as they are lines in the input and as many columns as there are non-
NULL values in col_types, plus an additional column if nsep is specified. The colnames (other
than the row index) are set to ’V’ concatenated with the column number unless col_types is a
named vector in which case the names are inherited.

Author(s)

Michael Kane

Examples

col_names <- names(iris)
write.csv(iris, file="iris.csv", row.names=FALSE)
it <- idstrsplit("iris.csv", col_types=c(rep("numeric", 4), "character"),

sep=",")
Get the elements
iris_read <- it$nextElem()[-1,]
or with the iterators package
nextElem(it)
names(iris_read) <- col_names
print(head(iris_read))

remove iterator, connections and files
rm("it")
gc(FALSE)
unlink("iris.csv")

imstrsplit Create an iterator for splitting binary or character input into a matrix

Description

imstrsplit takes a binary connection or character vector (which is interpreted as a file name) and
splits it into a character matrix according to the separator.

Usage

imstrsplit(x, sep="|", nsep=NA, strict=TRUE, ncol = NA,
type=c("character", "numeric", "logical", "integer", "complex",

"raw"), max.line = 65536L, max.size = 33554432L)

16 imstrsplit

Arguments

x character vector (each element is treated as a row) or a raw vector (LF characters
'\n' separate rows) to split

sep single character: field (column) separator. Set to NA for no seperator; in other
words, a single column.

nsep row name separator (single character) or NA if no row names are included

strict logical, if FALSE then mstrsplit will not fail on parsing errors, otherwise input
not matching the format (e.g. more columns than expected) will cause an error.

ncol number of columns to expect. If NA then the number of columns is guessed from
the first line.

type a character string representing one of the 6 atomic types: 'character', 'numeric',
'logical', 'integer', 'complex', or 'raw'. The output matrix will use this
as its storage mode and the input will be parsed directly into this format without
using intermediate strings.

max.line maximum length of one line (in byets) - determines the size of the read buffer,
default is 64kb

max.size maximum size of the chunk (in bytes), default is 32Mb

Details

If the input is a raw vector, then it is interpreted as ASCII/UTF-8 content with LF ('\n') characters
separating lines. If the input is a character vector then each element is treated as a line.

If nsep is specified then all characters up to (but excluding) the occurrence of nsep are treated as
the row name. The remaining characters are split using the sep character into fields (columns). If
ncol is NA then the first line of the input determines the number of columns. mstrsplit will fail
with an error if any line contains more columns then expected unless strict is FALSE. Excessive
columns are ignored in that case. Lines may contain fewer columns in which case they are set to
NA.

The processing is geared towards efficiency - no string re-coding is performed and raw input vector
is processed directly, avoiding the creation of intermediate string representations.

Note that it is legal to use the same separator for sep and nsep in which case the first field is treated
as a row name and subsequent fields as data columns.

Value

A matrix with as many rows as they are lines in the input and as many columns as there are fields
in the first line. The storage mode of the matrix will be determined by the input to type.

Author(s)

Michael Kane

input.file 17

Examples

mm <- model.matrix(~., iris)
f <- file("iris_mm.io", "wb")
writeBin(as.output(mm), f)
close(f)
it <- imstrsplit("iris_mm.io", type="numeric", nsep="\t")
iris_mm <- it$nextElem()
print(head(iris_mm))

remove iterator, connections and files
rm("it")
gc(FALSE)
unlink("iris_mm.io")

input.file Load a file on the disk

Description

input.file efficently reads a file on the disk into R using a formatter function. The function may
be mstrsplit, dstrsplit, dstrfw, but can also be a user-defined function.

Usage

input.file(file_name, formatter = mstrsplit, ...)

Arguments

file_name the input filename as a character string

formatter a function for formatting the input. mstrsplit is used by default.

... other arguments passed to the formatter

Value

the return type of the formatter function; by default a character matrix.

Author(s)

Taylor Arnold and Simon Urbanek

18 mstrsplit

line.merge Merge multiple sources

Description

Read lines for a collection of sources and merges the results to a single output.

Usage

line.merge(sources, target, sep = "|", close = TRUE)

Arguments

sources A list or vector of connections which need to be merged

target A connection object or a character string giving the output of the merge. If
a character string a new file connection will be created with the supplied file
name.

sep string specifying the key delimiter. Only the first character is used. Can be "" if
the entire string is to be treated as a key.

close logical. Should the input to sources be closed by the function.

Value

No explicit value is returned. The function is used purely for its side effects on the sources and
target.

Author(s)

Simon Urbanek

mstrsplit Split binary or character input into a matrix

Description

mstrsplit takes either raw or character vector and splits it into a character matrix according to the
separators.

Usage

mstrsplit(x, sep="|", nsep=NA, strict=TRUE, ncol = NA,
type=c("character", "numeric", "logical", "integer", "complex", "raw"),
skip=0L, nrows=-1L, quote="")

mstrsplit 19

Arguments

x character vector (each element is treated as a row) or a raw vector (LF characters
'\n' separate rows) to split

sep single character: field (column) separator. Set to NA for no seperator; in other
words, a single column.

nsep row name separator (single character) or NA if no row names are included

strict logical, if FALSE then mstrsplit will not fail on parsing errors, otherwise input
not matching the format (e.g. more columns than expected) will cause an error.

ncol number of columns to expect. If NA then the number of columns is guessed from
the first line.

type a character string representing one of the 6 atomic types: 'character', 'numeric',
'logical', 'integer', 'complex', or 'raw'. The output matrix will use this
as its storage mode and the input will be parsed directly into this format without
using intermediate strings.

skip integer: the number of lines of the data file to skip before parsing records.

nrows integer: the maximum number of rows to read in. Negative and other invalid
values are ignored, and indiate that the entire input should be processed.

quote the set of quoting characters as a length 1 vector. To disable quoting altogether,
use quote = "" (the default). Quoting is only considered for columns read as
character.

Details

If the input is a raw vector, then it is interpreted as ASCII/UTF-8 content with LF ('\n') characters
separating lines. If the input is a character vector then each element is treated as a line.

If nsep is specified then all characters up to (but excluding) the occurrence of nsep are treated as
the row name. The remaining characters are split using the sep character into fields (columns). If
ncol is NA then the first line of the input determines the number of columns. mstrsplit will fail
with an error if any line contains more columns then expected unless strict is FALSE. Excessive
columns are ignored in that case. Lines may contain fewer columns in which case they are set to
NA.

The processing is geared towards efficiency - no string re-coding is performed and raw input vector
is processed directly, avoiding the creation of intermediate string representations.

Note that it is legal to use the same separator for sep and nsep in which case the first field is treated
as a row name and subsequent fields as data columns.

Value

A matrix with as many rows as they are lines in the input and as many columns as there are fields
in the first line. The storage mode of the matrix will be determined by the input to type.

Author(s)

Simon Urbanek

20 output.file

Examples

c <- c("A\tB|C|D", "A\tB|B|B", "B\tA|C|E")
m <- mstrsplit(gsub("\t","|",c))
dim(m)
m
m <- mstrsplit(c,, "\t")
rownames(m)
m

use raw vectors instead
r <- charToRaw(paste(c, collapse="\n"))
mstrsplit(r)
mstrsplit(r, nsep="\t")

output.file Write an R object to a file as a character string

Description

Writes any R object to a file or connection using an output formatter. Useful for pairing with the
input.file function.

Usage

output.file(x, file, formatter.output = NULL)

Arguments

x R object to write to the file

file the input filename as a character string or a connection object open for writting.

formatter.output

a function for formatting the output. Using null will attempt to find the appro-
priate method given the class of the input x.

Value

invisibly returns the input to file.

Author(s)

Taylor Arnold and Simon Urbanek

read.csv.raw 21

read.csv.raw Fast data frame input

Description

A fast replacement of read.csv and read.delim which pre-loads the data as a raw vector and
parses without constructing intermediate strings.

Usage

read.csv.raw(file, header=TRUE, sep=",", skip=0L, fileEncoding="",
colClasses, nrows = -1L, nsep = NA, strict=TRUE,
nrowsClasses = 25L, quote="'\"")

read.delim.raw(file, header=TRUE, sep="\t", ...)

Arguments

file A connection object or a character string naming a file from which to read data.

header logical. Does a header row exist for the data.

sep single character: field (column) separator.

skip integer. Number of lines to skip in the input, no including the header.

fileEncoding The name of the encoding to be assumed. Only used when con is a character
string naming a file.

colClasses an optional character vector indicating the column types. A vector of classes to
be assumed for the output dataframe. If it is a list, class(x)[1] will be used to
determine the class of the contained element. It will not be recycled, and must
be at least as long as the longest row if strict is TRUE.
Possible values are "NULL" (when the column is skipped) one of the six atomic
vector types ('character', 'numeric', 'logical', 'integer', 'complex',
'raw') or POSIXct. ’POSIXct’ will parse date format in the form "YYYY-MM-
DD hh:mm:ss.sss" assuming GMT time zone. The separators between digits
can be any non-digit characters and only the date part is mandatory. See also
fasttime::asPOSIXct for details.

nrows integer: the maximum number of rows to read in. Negative and other invalid
values are ignored.

nsep index name separator (single character) or NA if no index names are included

strict logical, if FALSE then dstrsplit will not fail on parsing errors, otherwise input
not matching the format (e.g. more columns than expected) will cause an error.

nrowsClasses integer. Maximum number of rows of data to read to learn column types. Not
used when col_types is supplied.

quote the set of quoting characters as a length 1 vector. To disable quoting altogether,
use quote = "". Quoting is only considered for columns read as character.

... additional parameters to pass to read.csv.raw

22 readAsRaw

Details

See dstrsplit for the details of nsep, sep, and strict.

Value

A data frame containing a representation of the data in the file.

Author(s)

Taylor Arnold and Simon Urbanek

readAsRaw Read binary data in as raw

Description

readAsRaw takes a connection or file name and reads it into a raw type.

Usage

readAsRaw(con, n, nmax, fileEncoding="")

Arguments

con A connection object or a character string naming a file from which to save the
output.

n Expected number of bytes to read. Set to 65536L by default when con is a
connection, and set to the file size by default when con is a character string.

nmax Maximum number of bytes to read; missing of Inf to read in the entire connec-
tion.

fileEncoding When con is a connection, the file encoding to use to open the connection.

Value

readAsRaw returns a raw type which can then be consumed by functions like mstrsplit and
dstrsplit.

Author(s)

Taylor Arnold

which.min.key 23

Examples

mm <- model.matrix(~., iris)
f <- file("iris_mm.io", "wb")
writeBin(as.output(mm), f)
close(f)
m <- mstrsplit(readAsRaw("iris_mm.io"), type="numeric", nsep="\t")
head(mm)
head(m)
unlink("iris_mm.io")

which.min.key Determine the next key in bytewise order

Description

which.min.key takes either a character vector or a list of strings and returns the location of the
element that is lexicographically (using bytewise comparison) the first. In a sense it is which.min
for strings. In addition, it supports prefix comparisons using a key delimiter (see below).

Usage

which.min.key(keys, sep = "|")

Arguments

keys character vector or a list of strings to use as input

sep string specifying the key delimiter. Only the first character is used. Can be "" if
the entire string is to be treated as a key.

Details

which.min.key considers the prefix of each element in keys up to the delimiter specified by sep.
It returns the index of the element which is lexicographically first among all the elements, using
bytewise comparison (i.e. the locale is not used and multi-byte characters are not considered as one
character).

If keys is a character vector then NA elements are treated as non-existent and will never be picked.

If keys is a list then only string elements of length > 0 are eligible and NAs are not treated specially
(hence they will be sorted in just like the "NA" string).

Value

scalar integer denoting the index of the lexicographically first element. In case of a tie the lowest
index is returned. If there are no eligible elements in keys then a zero-length integer vector is
returned.

Author(s)

Simon Urbanek

24 write.csv.raw

See Also

which.min

Examples

which.min.key(c("g","a","b",NA,"z","a"))
which.min.key(c("g","a|z","b",NA,"z|0","a"))
which.min.key(c("g","a|z","b",NA,"z|0","a"), "")
which.min.key(list("X",1,NULL,"F","Z"))
which.min.key(as.character(c(NA, NA)))
which.min.key(NA_character_)
which.min.key(list())

write.csv.raw Fast data output to disk

Description

A fast replacement of write.csv and write.table which saves the data as a raw vector rather than
a character one.

Usage

write.csv.raw(x, file = "", append = FALSE, sep = ",", nsep="\t",
col.names = !is.null(colnames(x)), fileEncoding = "")

write.table.raw(x, file = "", sep = " ", ...)

Arguments

x object which is to be saved.
file A connection object or a character string naming a file from which to save the

output.
append logical. Only used when file is a character string.
sep field (column) separator.
nsep index name separator (single character) or NA if no index names are included
col.names logical. Should a raw of column names be writen.
fileEncoding character string: if non-empty declares the encoding to be used on a file.
... additional parameters to pass to write.table.raw.

Details

See as.output for the details of how various data types are converted to raw vectors (or character
vectors when raw is not available).

Author(s)

Taylor Arnold and Simon Urbanek

Index

∗ iterator
idstrsplit, 14
imstrsplit, 15

∗ manip
.default.formatter, 2
as.output, 3
chunk, 4
chunk.apply, 5
chunk.map, 7
ctapply, 8
dstrfw, 9
dstrsplit, 11
fdrbind, 13
input.file, 17
line.merge, 18
mstrsplit, 18
output.file, 20
read.csv.raw, 21
which.min.key, 23
write.csv.raw, 24

.default.formatter, 2

as.output, 2, 3, 7, 24

chunk, 4
chunk.apply, 5
chunk.map, 7
chunk.reader, 7
chunk.tapply (chunk.apply), 5
ctapply, 8

dstrfw, 9
dstrsplit, 11, 22

fdrbind, 13

idstrsplit, 14
imstrsplit, 15
input.file, 17
iotools.fd (as.output), 3
iotools.stderr (as.output), 3

iotools.stdout (as.output), 3

line.merge, 18

mstrsplit, 2, 5, 6, 18

order, 9
output.file, 20

rbind, 13
read.chunk, 8
read.chunk (chunk), 4
read.csv.raw, 21
read.delim.raw (read.csv.raw), 21
readAsRaw, 22
rowindex (dstrsplit), 11

sort, 9

tapply, 9

which.min, 24
which.min.key, 23
write.csv.raw, 24
write.table.raw (write.csv.raw), 24

25

	.default.formatter
	as.output
	chunk
	chunk.apply
	chunk.map
	ctapply
	dstrfw
	dstrsplit
	fdrbind
	idstrsplit
	imstrsplit
	input.file
	line.merge
	mstrsplit
	output.file
	read.csv.raw
	readAsRaw
	which.min.key
	write.csv.raw
	Index

